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Note 

A Generalized Process for Phase Equilibrium 
Calculation with Cubic Equations of State 

J. L. Daridon,1 H. Saint-Guirons, 1 B. LaGourette, ~ P. Xans, 1 
and C. Leibovici 2 

Received February 22, 1993 

This paper presents a general method for calculating the fugacity coefficient with 
a view to representing phase equilibria of fluids on the basis of cubic equations 
of state with two, three or four parameters. The basic formalism selected in this 
study is that of Schmidt and Wenzel. 
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1. I N T R O D U C T I O N  

A number  of practical applications in industrial sectors with sometimes 
widely varying requirements (such as the food industry, petroleum engi- 
neering, pharmacology,  fine chemistry, etc.) need knowledge, or at least 
prediction, of the pressure P and temperature T conditions of phase 
changes and of the compositions of the phases concerned. It is therefore 
essential to develop models able to characterize thermodynamic equilibria 
at pressures which can reach high levels. There are various ways of 
constructing models with this purpose, including models based on equa- 
tions of state, models involving group contributions, statistical models, and 
a number  of other approaches. If the equation-of-state type of model is 
chosen, then the search for equilibrium conditions will require calculation 
of the fugacity coefficients, and the complexity of this calculation will 
depend on the form of the equation of state selected. 
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Among the wide range of equations of state proposed in the literature, 
those of a cubic form, essentially derived from modifications of the van der 
Waals equation, are very often selected by users for predicting phase 
equilibria. These equations have proved relatively successful for such 
calculations because of their structural simplicity. However, no single 
equation has been able to establish unrivalled supremacy and there are 
consequently a large number of versions (differing for example as regards 
to the number of parameters, mixing rules, etc.), and each having its own 
strengths and weaknesses. It is therefore often necessary in practice .to use 
several cubic equations of state depending on (i.e., polar or apolar) of the 
components in the mixture. 

This paper presents a simple methodology whereby all existing cubic 
equations, whether they involve two, three, or four parameters, can be 
encompassed within a general formalism. This unified formulation of 
fugacity calculations is clearly of interest, because it makes it possible to 
implement any cubic equation independently of the number of parameters 
and of the associated mixing rules. 

2. GENERAL FORMALISM 

All cubic equations of state share the power of three with respect to 
volume v and including the same repulsion term of the van der Waals 
equation. Because of this similarity, it is possible to move from one 
equation to another, adjusting the values of the parameters involved in the 
equations. This means that a single equation of state can be adopted to 
represent any of the equations of this family. The equation which we chose 
to use and which possesses this ability is the one proposed by Schmidt and 
Wenzel [ 1 ]: 

R T a( T)  
P -  v ------b v2 + ubv § wb 2 (1) 

This general equation contains four parameters, a, b, u, and w, which we 
allow to depend on temperature as well as on the number of moles of the 
components in the mixture: 

a = a(T ,  ni), b = b(T,  ni), u = u(T,  ni), w = w(T,  ni) (2) 

In this form, cubic equations with two parameters (of the Redlich-Kwong 
[2] or Peng-Robinson [-3] types, for example) are directly accessible 
through allocation of adequate numeric values to u and w, namely, 

u = l ,  w = 0  for R-K (3) 

u=2 ,  w = - I  for P-R (4) 
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However, equations with three parameters (such as the Patel-Teja [4] 
equation) or four parameters (of the Adachi-Lu-Sugie [5] type) do not 
appear explicitly in the general form selected. For these equations, the 
correlations between the specific parameters of the primary equation and 
the coefficients u and w of the generalized form must be established in order 
to be able to determine the fugacity coefficient for example. Thus the 
identification leads to the following relationships: 

c c u = l + g ,  w= -~  for the Patel-Teja equation (5) 

and 

b t = - -  
d -  c dc 

b ' w -  b2 for the Adachi-Lu-Sugie equation (6) 

To represent a given cubic equation for mixtures by means of the 
selected generalized form, it is also necessary for the coefficients u and w to 
invoke mixing rules which are coherent with the mixing rules for the specific 
parameters of this cubic equation. Obtaining the required compatibility 
often involves complicated mixing rules for u and w. As an example, for the 
four-parameter Adachi-Lu-Sugie equation, for which the usual associated 
mixing rules are 

c=Zxic , ,  d : ~ x i d i  (7) 

the corresponding rules for the terms u and w of the general formalism are 
expressed as follows: 

Zxiuib' Y " x i b i ( u i - x ~ - 4 w i ) *  Zxibi(ui+x/-~-4wi)  (8) 
u = Z ,  x,b-------~' w -  4(52 x~b~) 2 

The complicated form of the mixing rules for u and w means that a calcula- 
tion of the fugacity on the basis of analytical expressions is awkward. 
Despite this difficulty, the possibility of implementing any cubic equation 
by means of a single procedure remains a very attractive one, particularly 
from an algorithmic point of view, for performing comparative assessments 
of the various cubic equations. Consequently, we develop a method for 
calculating the fugacity coefficient based on Eq. (1), which removes the 
need to convert the mixing rules and therefore gets around the difficulty 
emphasized above. 
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3. CALCULATION OF T H E  FUGACITY C O E F F I C I E N T  

The fugacity coefficient ~b i of component i is calculated from the 
relationship 

-ln  ln~bi=\ Ogti "l T, Vr, nj#i 

where 
a_ar ;(1 ,) 

aar-- 7- -T dv (lO) 

The analytical expressions for 2 depend on the nature of the roots of the 
denominator: 

A > 0 ,  2 - a  l n ( 2 V + u b + b x / A ~  
bRTx / -  ~ \ 2 v + u b _ b x / - ~ /  (12a) 

-2a  (b x / - ~  ~ (12b) 
A < 0 ,  2 bRTx/-S--~Artan\2v+ub j 

- a  , 2 
A =0 ,  2 (12c) 

RT 2v + ub 

with 

A = u 2 - 4w (12d) 

In practice, it is preferable to introduce reduced coefficients A and B 
and the compressibility factor Z defined by 

aP bP Pv 
A - (RT) 2, B = RT' Z - RT (13) 

The expression for the fugacity coefficient can be written in the reduced 
general form presented in Table I. The continuity of the fugacity coefficient 
between all three situations can easily be verified. 

In this formulation the terms u and w are characteristic of the cubic 
form equation used, whereas the derivatives u* and w* depend on the 
mixing rules which must be used in the case of systems containing several 
components. It is at this level that conversion of mixing rules can be 

A a r = l n  v + ) .  with 2 = f 2  a/RT (11) v - b v 2 + ubv + wb 2 dv 

designates the residual Helmholtz free energy, which is expressed by means 
of the cubic equation of state (1) by 
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Table I. Fugacity Coefficient 

In ~bi = - l n ( Z -  B) + ( Z -  1 ) b* + 2(a* - b*) + Ju* + Kw* 

2AB 
A = 0  J 

(2Z + uB) 2 

K = O  

['On2a'~ / I/ Onb~ / . ['Ou'~ ( 3 w )  
a*=t-~ni)/na; b*=t~--~n~)/b; u =n~sn~d; w*=n\sn,/I 

Table II. Two-Parameter Cubic Equations of State 

Ref. 
Name Year No. Equation u w u* w* 

R T  a 
van der Waals 1873 P . . . .  0 0 0 0 

u - -  b 13 2 

RT ./~-~ 
Redlich-Kwong 1949 2 P = - -  1 0 0 0 

v - b  v (v+b)  

Wilson 1964 6 p _  __RT a( T) 1 0 0 0 
v - b  v ( v+b)  

Soave 1972 7 P -  __RT a(T) 1 0 0 0 
v - b  v ( v+b)  

Peng-Robinson 1976 

Harmens 1977 

R T a( T) 
3 P = - -  2 --1 0 0 

v - b  v ( v + b ) + b ( v - b )  

R T  a(T) 
8 P = - -  3 - 2  0 0 

v - b v z + 3vb - 2b 2 

Watson et al. 1986 11 P =  R T  a(T) ~_--~ ~2 ; v = f - c ( T )  0 0 0 0 

Adachi--Lu 1984 10 P R T  a( T) 0 0 0 0 
v - b  v 2 

Peneloux et al. 1982 9 P -  R T  a( T) - -  v = ~ , - - c  1 0 0 0 
~ - b  ~(~+b) '  
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avoided and the procedure simplified by expressing the derivatives u* 
and w* directly as a function of the derivatives of the parameters of the 
equation of state we wish to represent. 

In Tables II, III, and IV we list the cubic equations of state frequently 
cited in the literature; for each of them we have expressed as a function of 
its parameters the terms u and w, as well as u* and w*, so as to encompass 
all the equations within the general formalism. 

4. CONCLUSION 

Research into the prediction of thermodynamic equilibria on the basis 
of cubic equations of state often requires comparison of their respective 
performances. The objective pursued here is to provide potential users with 
a unified tool for implementing any of these equations whatever the 
number of parameters and whatever the associated mixing rules. 

The expression of the fugacity coefficient (Table I) in connection with 
the relationships presented in Tables II, III, and IV therefore allows cubic 
equations of state to be used for phase equilibrium calculation using a 
single procedure, whatever the sign of A (the most common situation in 
practice is A>0) .  Similar developments could be envisaged for other 
thermodynamic properties of liquids and gases such as thermal capacities, 
residual entropy, etc. 
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